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Classical decay of Coulomb charges

D. K. Gridnev and J. S. Vaagen
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~Received 9 February 2000; published 25 January 2001!

In this paper we postulate and solve the following problem: Prove in the framework of Newtonian mechan-
ics that three Coulomb charges (21,Q,Q) for Q.4 will leave any initial volume in a finite time and estimate
this time. We also discuss possible generalizations of the problem and its relation to stability of ions and
molecules.
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The classical dynamics of three charges has been
cussed in textbooks such as@1#. A well-known scaling prop-
erty of the Coulomb interaction reduces the decay prob
for charges (2q1 ,q2 ,q3) to that for charges (21,Q2 ,Q3).
The scaling of charges results in some scaling of space
time coordinates, which leads to the initial Lagrangian m
tiplied by a factor and thus to the same dynamics@2#.

For appropriate initial conditions and 0,Q,1 the sys-
tem of charges (21,Q,Q) can stay infinitely long within a
prescribed volume, which we take as a sphere with radiuR.
This is because a positive chargeQ,1 can perform an or-
dinary Kepler motion around the negative charge, while
second positive charge can do the same, since it ‘‘sees
monopole attraction of charge211Q, and its perturbation
of the pair (21,Q) can be assumed negligible. We will sho
that this is impossible whenQ.4 and give a lower bound
for the time it takes for the charges to leave any given v
ume. For point charges there is zero probability for o
charge to hit another~the closer one charge gets to anoth
the less it ‘‘feels’’ the presence of other charges and its m
tion becomes just Keplerian! and we assume all trajectorie
to be continuous and smooth.

Following @3# we draw all coordinates fromO, the center
of mass~CM! of the three-particle system, which is at re
We start by calculating the second time derivative of
moment of inertia of the system:J5m1r1

21m2r2
21m3r3

2,
where (r1 ,r2 ,r3) are position vectors of the charge
(21,Q,Q) with masses (m1 ,m2 ,m3), respectively. We use
the notationm5min(m1,m2,m3) andM5max(m1,m2,m3):

J̈5
d

dt
2~m1r1• ṙ11m2r2• ṙ21m3r3• ṙ3!

54T12~r1•F231r2•F131r3•F12!. ~1!

Here T stands for the total kinetic energy,Fij is the force
acting from the chargesi and j on the third chargek, and
( i jk ) is a permutation of (123). Rewriting the last equati
in terms of the potential energyV(r1 ,r2 ,r3) we obtain

J̈54T22~r1•“1V1r2•“2V1r3•“3V!, ~2!

where the potential energy is

V~r1 ,r2 ,r3!5
Q2

ur22r3u
2

Q

ur12r2u
2

Q

ur12r3u
. ~3!
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For a smooth homogeneous functionf (x) of degree k,
f (br )5bkf (r ), Euler’s theorem@2# gives (r•“ f )5k f(r ).
Since the potentialV is a homogenous function of degree
21 we may apply Euler’s theorem to Eq.~2! and get

J̈52T12E, ~4!

where E5T1V is the total energy of the system. IfE is
positive, then inevitably after some time the system w
monotonically expand, since the second derivative is posi
and greater than someE. Growth inJ is obviously equivalent
to expansion in Cartesian coordinates, sinceJ<3MRmax

2 ,
whereRmax5max(r1,r2,r3). The decay~migration! time td is
estimated below.

If the energy is negative then the system stays in confi
rations with negativeV(r1 ,r2 ,r3). We introduce the instan
plane S @see Fig. 1~a!#, which is perpendicular to the line
connecting the two positive charges and positioned midw
between them, and thus separates the whole space into
parts. If the negative charge stays in this plane all th
charges form a triangle with two equal sidesr 125r 13 and a
third sider 23, for which r 23<2r 12, @see Fig. 1~b!#. The po-
tential energy then becomes

V5
Q2

r 23
2

2Q

r 12
>

Q2

r 23
2

4Q

r 23
.0, ~5!

i.e., positive ifQ.4. Thus in the caseE<0 it is impossible
for the negative charge to stay in the planeS.

FIG. 1. ~a! General positioning of three charges withSbeing an
instant plane midway between positive charges, perpendicula
the line connecting them.~b! The negative charge being positione
in the planeS makes the potential energy positive whenQ.4 ~see
text!.
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This observation drives us to the conclusion that if t
negative charge initially was closer to, say, the posit
charge labeled 3, it would also subsequently remain close
it since it cannot penetrate through the planeS. Now we
calculate the radial projectionF13• r̂2 of the force acting on
the positive charge labeled 2~the caret denoting a unit vecto
in the r2 direction!,

F13• r̂25
Q2

r 23
2 ~ r̂23• r̂2!2

Q

r 12
2 ~ r̂21• r̂2!, ~6!

with

r ik5r i2r k. ~7!

Since the center of mass is always located inside the trian
the two following inequalities obviously hold: (r̂23• r̂2)
>( r̂23• r̂21) and (r̂21• r̂2)<1. Thus from Eq.~6! we derive
the inequality

F13• r̂2>
Q2

r 23
2 ~ r̂23• r̂21!2

Q

r 12
2

. ~8!

Charge21 stays on the right-hand side of the planeS. We
can improve the inequality by putting the negative charge
the planeS, keeping the same angle (r̂23• r̂21), and minimiz-
ing r 12. Now (r̂23• r̂21)5r 23/2r 12, and we rewrite the in-
equality as

F13• r̂12>
Q

r 23r 12
S Q

2
2

r 23

r 12
D>

Q~Q24!

r 23
2

.0, ~9!

where we usedr 12>r 23/2 andQ.4. The right-hand side o
the first inequality is simplyV/2r 12. From Eq.~9! we see
that the force acting on 2 from charges 1 and 3 always h
positive radial projection, which makes charge 2 leave
prescribed volume. The time spent is estimated below.

It is important thatQ.4 since forQ54 the whole sys-
tem has an equilibrium position with the negative cha
right between the two positive charges. Although unsta
this equilibrium would make untrue our statement about
cay regardless of any initial conditions or mass ratio.

To estimate the time expenditure of the decay we hav
consider separately the casesE>E0 andE,E0, whereE0 is
some low positive threshold, which is calculated below.

At E>E0 an infinity of motion is predicted by the well
known virial theorem, which nevertheless does not pred
the time when the system leaves the volume~for example, it
can be expected greater than the age of the solar system
in Poincare´’s theorem on returning!. Here we calculate the
time that is the deadline for charges to escape from a g
volume, which is independent of any initial conditions e
cept this volume.

For E>E0 we can write an inequality using Eq.~4!:

J~ t !>J01 J̇0~ t2t0!1E0~ t2t0!2, ~10!
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whereJ0 and J̇0 are taken from initial conditions at timet0
and the inequality~10! is valid at t>t0. Recalling that
J(t0)<3MR2 it is now useful to compare the non-negativ
function J(t) with the parabola~see Fig. 2!

f ~ t !5E0S t2A3

E0MRD 2

, ~11!

which touches thet axis at the pointtd/25RA3M /E0 and
has the curvaturef̈ (t)52E0. Since f (0)53MR2 the actual
curve J(t) initially falls below f (t) until it crosses the pa-
rabola somoewhere before its minimum. At the cross
J(tc)5 f (tc) and J̇(tc)> ḟ (tc). From ~10! we find that the
actual curve lies above the parabolaf (t) after passing the
crossing point, i.e.,J(t)> f (t) for t>tc . Thus for E>E0 ,
J(t) will irreversibly have exceeded the value 3MR2, i.e.,
charges have left the volume of radiusR, at a time prior to

td52RA3M /E0, ~12!

which we take as a measure of the escape or decay tim
In the caseE,E0 two circumstances have to be observe

The first one is that at 0,E,E0 the negative charge ca
penetrate the planeS, in other words, a ‘‘window’’ opens in
the ‘‘wall’’ S. One can easily calculate~see Fig. 1! that, if the
distance between the positive charges is less thand, the
‘‘window’’ will not appear at E0,Q(Q24)/d. The second
difficulty is the fact that the positive force~9! can take any
small value and we have to look carefully at the center
mass to predict the decay time and estimate the thresholdE0.

To this end we carry out simple estimates, our aim be
to prove only the existence of a time when the system
capes from the volume, independent of initial conditions
side it. Now we assumeE0 to be small enough to have th
‘‘window’’ closed and embed our initial sphere into tw
other concentric spheres with radiiR,aR,bR. If charge 2
stays inside the second sphere, how far from it can the p
tive charge 3 be to keep the center of mass at rest~as the
center of all three spheres!, i.e., where it was initially? If

FIG. 2. The sketched actual curve crosses the reference para
~bold! at some pointt0 only once.
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charge 3 moves far away, then, since the negative charge
always closer to 3, the center of mass is pulled out of pl
unless counterbalanced by the motion of the positive cha
2 in the opposite direction. If charge 2 is placed on the s
ond sphere, the furthest possible position away from it
charge 3 would obviously be obtained in the collinear c
with charge 3~on S) and the center of mass positioned b
tween them. If we denote the position of 3 asbR the CM
condition gives

2m2a1m1

b2a

2
1bm350. ~13!

This gives a linear relation betweenb anda and it is quite
clear that, taking the radius of the third sphere as

b~a!5
M

m
a.

2m21m1

2m31m1
a, ~14!

i.e., larger than the number derived from Eq.~13!, means that
if charge 3 is outside the sphereb(a)R, charge 2 is outside
the sphereaR. Below we use the separation measu
D(a)R, D(a)5a1b(a)5(11M /m)a giving the maxi-
mum separation of points on the two reference circles.

Now we are ready to estimate the time of escape. Ther
always a positive projection of the force~9! acting on charge
2, which makes the radial component of the speed, which
denote byv2, increase monotonically. We consider charge
to be all the time inside the sphereb(1)R, otherwise due to
the center of mass condition charge 2 would leave the in
volume even faster and the monotonic increase in sp
would not let it return. In this case, according to Eq.~9! and
sincer 23<D(1)R we have the inequality

r̈ 2>
Q~Q24!

Mr 23
2

.
Q~Q24!

M @D~1!R#2
. ~15!

Now performing similar considerations as forJ̈, we just have
to modify some constants in Eq.~12! to get the result

td
(2)~R!5A 2M

Q~Q24!S M

m
11DR3/2. ~16!

We are left only with setting the thresholdE0 in a way that
does not let the ‘‘window’’ open during the motion. Let u
put a52 and make the threshold so low that, while charg
stays inside the second sphere and charge 3 somewhe
side the third sphere with the radiusb(2)R, i.e., r 23
<D(2)R, the window remains closed, i.e., we impose t
condition

E0<
Q~Q24!

2S M

m
11DR

<
Q~Q24!

r 23
. ~17!

Now in time td
(2)(2R) charge 2 would leave the secon

sphere and since it passed the distanceR without losing
speed its minimal kinetic energy on the way out from t
second sphere has to be
02660
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Tmin5
m2

2 S R

td
(2)~2R!

D 2

>
mQ~Q24!

32RM~M /m11!2
. ~18!

One can easily check thatE05Tmin satisfies~17! and, since
the kinetic energy of charge 2 is always larger thanTmin after
it leaves the second sphere, the window remains closed. N
substituting this threshold into Eq.~12! we obtain

td
(1)5

8A2R3/2M

AmQ~Q24!
. ~19!

Thus our estimate for the time of decay istd5max@td
(1) ,td

(2)#.
Finally we consider the general case of different char

(21,Q2 ,Q3). Since all computations are analogous to tho
above we do not provide complete proofs in what follow
We have to impose the existence of a plane that would p
vent the negative charge from coupling together the t
positive ones. This is clearly equivalent to the existence o
point between the positive charges where the placement
negative charge would make the total potential positive. D
noting byx andy the corresponding distances from charge
and 3 to the negative charge 1, we demand

2
Q2

x
2

Q3

y
1

Q2Q3

x1y
.0. ~20!

If we multiply the inequality by (x1y), we obtain

~Q2Q32Q22Q3!.Q2

y

x
1Q3

x

y
. ~21!

This may be rewritten as

~Q2Q32Q22Q3!.AQ2Q3S s1
1

sD , ~22!

wheres5AQ2y/AQ3x. The term in square brackets in~22!
attains its minimum ats51 and we are left with

AQ2Q3.AQ21AQ3. ~23!

We position an instant planeSperpendicular to the line con
necting the positive charges atAQ3x5AQ2y. One can check
that on any positive charge there would act a positive ra
projection of the force from two other charges remaini
behind the plane. Hence the system of charges decays
finite time when~23! is fullfilled.

In quantum mechanics~QM! the question of stability of
three charges has been a subject of extensive studies
long time. For the system to be stable against decay
needs to have the energy of the system lower than the gro
state in any pair channel, which is usually referred to as
threshold in the system. For a wide coverage of results in
area see, for example, the review article@4#. It is known that
a system of charges (21,Q,Q) is always stable atQ,1. For
Q51 there is a region of mass ratios where the system
stable, and finally at approximatelyQ.1.24 the stability is
lost for all masses@5#. Up to now there has been no appare
theoretical attempt to estimate this number@6#.
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If we take two interacting particles, it is known that
bound state can appear only if the particles can be confi
on some energy surface. In the case of three Coulo
charges it is impossible to put them on a compact ene
surface due to the singularity of the Coulomb interactio
Thus the stability can be assessed only through the de
time of the system. We do not provide a formal proof bu
is intuitively obvious that, if the classical system is decayi
in a finite time, the quantum analog system cannot pos
ld

,
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bound states. To see this we may expand the wave func
into a combination of narrow wave packets, and the timee
lution of this function is largely determined by the Ehrenfe
theorem, with all wave packets moving along classical t
jectories. Thus the probability density cannot be station
and the quantum system also decays. Our classical re
indicates the quantum instability for all masses atQ.4 and
it agrees with the results of QM computations predicti
instability atQ.1.24 regardless of the mass ratio.
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