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Classical decay of Coulomb charges
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In this paper we postulate and solve the following problem: Prove in the framework of Newtonian mechan-
ics that three Coulomb charges (,Q,Q) for Q>4 will leave any initial volume in a finite time and estimate
this time. We also discuss possible generalizations of the problem and its relation to stability of ions and
molecules.
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The classical dynamics of three charges has been dis-or a smooth homogeneous functidiix) of degreek,
cussed in textbooks such E. A well-known scaling prop-  f(Br)=gf(r), Euler's theoren{2] gives (- Vf)=kf(r).
erty of the Coulomb interaction reduces the decay problensince the potential/ is a homogenous function of degree

for charges (- q;,0,,03) to that for charges<{1,Q,,Q53). —1 we may apply Euler’s theorem to E@®) and get
The scaling of charges results in some scaling of space and
time coordinates, which leads to the initial Lagrangian mul- J=2T+2E, (4)

tiplied by a factor and thus to the same dynanigk
For appropriate initial conditions and<0Q<1 the sys- whereE=T+V is the total energy of the system. H is

tem of charges {1,Q,Q) can stay infinitely long within a  positive, then inevitably after some time the system will

prescribed volume, which we take as a sphere with rallius monotonically expand, since the second derivative is positive

This is because a positive char@e<1 can perform an or- and greater than sonte Growth inJ is obviously equivalent

dinary Keplel’ motion around the negative Charge, while tth expansion in Cartesian CoordinatGS, sidee3M R2

" . ©ow " max?
second positive charge can do the same, since it “sees” §nereR,, ., = max(,r,rs). The decaymigration time ty is

monopole attraction of charge 1+ Q, and its perturbation astimated below.

of the pair (- 1,Q) can be assumed negligible. We will show |f the energy is negative then the system stays in configu-
that this is impossible whe@>4 and give a lower bound rations with negative/(r,r,,rs). We introduce the instant

for the time it takes for the charges to leave any given vol-p|ane5 [see Fig. 18)], which is perpendicular to the line
ume. For point charges there is zero probability for oneconnecting the two positive charges and positioned midway
charge to hit anothefthe closer one charge gets to another,petween them, and thus separates the whole space into two
the less it “feels” the presence of other charges and its moparts. If the negative charge stays in this plane all three
tion becomes just Kepleriarand we assume all trajectories charges form a triangle with two equal sidas=r,; and a

to be continuous and smooth. third sider 53, for whichr,z=<2r;,, [see Fig. 1b)]. The po-
Following [3] we draw all coordinates fror®, the center tential energy then becomes

of mass(CM) of the three-particle system, which is at rest.
We start by calculating the second time derivative of the Q2 2Q Q? 4Q
moment of inertia of the systeml=m;rf+m,r3+msr3, V= o= — >0, ()
where ,,r,,r;) are position vectors of the charges 3 2 T s
(—1,Q,Q) with massesf;,m,,ms), respectively. We use

e, itive IfO>4. ) “0itisi ,
the notationm=min(m, my.my) and M — max(m, .m,.my): i.e., positive ifQ>4. Thus in the case=<0 it is impossible

for the negative charge to stay in the plahe

. d . : .
J=aZ(mlrl-r1+m2r2-r2+m3l’3~r3) -1 1
=4T+2(I’1~F23+I’2~F13+I’3'Flz). (1)
I, T3 . '
Here T stands for the total kinetic energf; is the force o 1z v
acting from the chargesandj on the third charge&, and c
(ijk) is a permutation of (123). Rewriting the last equation e
in terms of the potential energy(r,r,,r;) we obtain . .
+Q S|P +Q +Q 2+
J=4T—2(r;-V V41,V V+15-VaV), 2 @) (b)

FIG. 1. (a) General positioning of three charges wiibeing an
instant plane midway between positive charges, perpendicular to
2 the line connecting thentb) The negative charge being positioned

Q _ Q _ Q 3) in the planeS makes the potential energy positive wh@i-4 (see
ro=rgl  [ri=raf [ri—rgl’ texy.

where the potential energy is

V(r11r21r3):|
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This observation drives us to the conclusion that if the 3MR2
negative charge initially was closer to, say, the positive
charge labeled 3, it would also subsequently remain closer to
it since it cannot penetrate through the plgaeNow we

calculate the radial projectioR,s: Fz of the force acting on
the positive charge labeled(the caret denoting a unit vector
in ther, direction,

J(t)

~ Q2.
Fiz r2=—(r23 rz)——(rzl ra), (6)
r23 r12

o

with

Fig="ri= Ik (7)

Since the center of mass is always located inside the triangle,
the two following inequalities obviously hold: f£3- r,) FIG. 2. The sketched actual curve crosses the reference parabola
=(rp3T21) and (,-r2)<1. Thus from Eq.(6) we derive  (bold) at some point, only once.

the inequality _
whereJ, andJ, are taken from initial conditions at timtg

R 2 Q and the inequality(10) is valid at t=t,. Recalling that
Fia o= — (g o)~ — . (8)  J(tg)<3MR? it is now useful to compare the non-negative
las Mo function J(t) with the paraboldsee Fig. 2

Charge—1 stays on the right-hand side of the pléaenNe

3 2
can improve the inequality by putting the negative charge on f(t)=Eo| t= \/ goM R) : (13)
the planeS, keeping the same angle, f ), and minimiz-

ing ri. Now (F23' F21):r23/2r12, and we rewrite the in- which touches the axis at the pointtd/2= R\/gM/EO and

equality as has the curvaturé(t)=2E,. Sincef(0)=3MR? the actual
curve J(t) initially falls below f(t) until it crosses the pa-

N Q [0 I23 Q(Q 4) rabola somoewhere before its minimum. At the crossing
ESAET i o b 2, — =0 O y)=f(t) and I(t)=F(t). From (10) we find that the

actual curve lies above the parabdig@) after passing the
crossing point, i.e.J(t)=f(t) for t=t.. Thus forE=E,,
J(t) will irreversibly have exceeded the valudi®R?, i.e.,
%harges have left the volume of radiRsat a time prior to

where we used,=r,4/2 andQ>4. The right-hand side of
the first inequality is simply/2r,. From Eq.(9) we see
that the force acting on 2 from charges 1 and 3 always has
positive radial projection, which makes charge 2 leave the ty=2R\3M/Ey (12)
prescribed volume. The time spent is estimated below. d 0

It is important thatQ>4 since forQ=4 the whole sys- which we take as a measure of the escape or decay time.
tem has an equilibrium position with the negative charge |n the cas€ <E, two circumstances have to be observed.
right between the two positive charges. Although unstableThe first one is that at @E<E, the negative charge can
this equilibrium would make untrue our statement about depenetrate the plang, in other words, a “window” opens in
cay regardless of any initial conditions or mass ratio. the “wall” S. One can easily calculateee Fig. 1that, if the

To estimate the time expenditure of the decay we have t@istance between the positive charges is less thathe
consider separately the cades E; andE<Eg, whereEgis  “window” will not appear at Eq<Q(Q—4)/d. The second
some low positive threshold, which is calculated below.  difficulty is the fact that the positive force) can take any

At E=E, an infinity of motion is predicted by the well- small value and we have to look carefully at the center of
known virial theorem, which nevertheless does not predichass to predict the decay time and estimate the threghpld
the time when the system leaves the volufize example, it To this end we carry out simple estimates, our aim being
can be expected greater than the age of the solar system, @sprove only the existence of a time when the system es-
in Poincarés theorem on returning Here we calculate the capes from the volume, independent of initial conditions in-
time that is the deadline for charges to escape from a giveside it. Now we assumg, to be small enough to have the
volume, which is independent of any initial conditions ex- “window” closed and embed our initial sphere into two

cept this volume. other concentric spheres with rafli «R< 8R. If charge 2
For E=E, we can write an inequality using E¢4): stays inside the second sphere, how far from it can the posi-

_ tive charge 3 be to keep the center of mass at (@stthe

J(t)=Jg+ Jo(t—tg) + Eg(t—1tg)?, (100  center of all three sphergsi.e., where it was initially? If
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charge 3 moves far away, then, since the negative charge 1 is 2
always closer to 3, the center of mass is pulled out of place Tin=
unless counterbalanced by the motion of the positive charge
2 in the opposite direction. If charge 2 is placed on the sec-

ond sphere, the furthest possible position away from it fo ne can easily check thEtO:T.mi” satisfies(17) and, since
charge 3 would obviously be obtained in the collinear casdh® Kinetic energy of charge 2 is always larger thgp, after
with charge 3(on S) and the center of mass positioned be- it leaves the second sphere, the window remains closed. Now

tween them. If we denote the position of 3 AR the CM substituting this threshold into E¢L2) we obtain

R
tP(2R)

my
2

_ mQQ-4)
" 32RM(M/m+1)?

condition gives o 8\/§R3’2M 19
—a d = —,—_ .
Thus our estimate for the time of decaytis=maxt{ t].
This gives a linear relation betweghand « and it is quite Finally we consider the general case of different charges
clear that, taking the radius of the third sphere as (—1,Q,,Q3). Since all computations are analogous to those

above we do not provide complete proofs in what follows.

> o (14) We have to impose the existence of a plane that would pre-

2ms+m; vent the negative charge from coupling together the two
, . positive ones. This is clearly equivalent to the existence of a
i.e., larger than the number derived from @), means that  oint between the positive charges where the placement of a
if charge 3 is outside the sphef{a)R, charge 2 is outside pegative charge would make the total potential positive. De-
the sphereaR. Below we use the separation measurengting byx andy the corresponding distances from charges 2
D()R, D(a)=a+ B(a)=(1+M/m)a giving the maxi-  and 3 to the negative charge 1, we demand
mum separation of points on the two reference circles.

Now we are ready to estimate the time of escape. There is Q, Qs; Q,0Q3
always a positive projection of the for€®) acting on charge T 7 + X+y >0. (20)
2, which makes the radial component of the speed, which we
denote byv,, increase monotonically. We consider charge 3If we multiply the inequality by x+y), we obtain
to be all the time inside the spheBf1)R, otherwise due to

M 2m,+my
Bla)="—a>s ==

the center of mass condition charge 2 would leave the initial A y X
volume even faster and the monotonic increase in speed (Q2Qs~ Q. Q:3)>sz-’-Q3y' (21)
would not let it return. In this case, according to E®). and . _
sincer,;<D(1)R we have the inequality This may be rewritten as
_ _ 1
QD Q-4 15 (Q2Qs—Qo~Qs)>VQ,Qs| s+ g) . @

Mr3; ~ M[D(1)R]?

wheres=/Q,y/\/Qzx. The term in square brackets (82)
attains its minimum as=1 and we are left with

VQ2Q5>VQ,+ 1/Qs. (23

We position an instant plar@perpendicular to the line con-
. . ] necting the positive charges d@Qsx=Q,y. One can check
We are left only with setting the thresholith in a way that that on any positive charge there would act a positive radial
does not let the “window” open during the motion. Let us pojection of the force from two other charges remaining

puta=2 and make the threshold so low that, while charge %enind the plane. Hence the system of charges decays in a
stays inside the second sphere and charge 3 somewhere fiite time when(23) is fullfilled.

Now performing similar considerations as fhrwe just have
to modify some constants in E¢L2) to get the result

2M M
@ARY=A——
=NV oe-a)

— 41

- R%2 (16)

side the third sphere with the radiug(2)R, i.e., rp; In quantum mechanicéQM) the question of stability of
<D(2)R, the window remains closed, i.e., we impose thethree charges has been a subject of extensive studies for a
condition long time. For the system to be stable against decay one
Q(0—4) Q(Q—4) needs_ to have t_he energy of the system lower than the ground
Eo< < _ (17) state in any pair channel, which is usually referred to as the
5 M +1lR M3 threshold in the system. For a wide coverage of results in this
m area see, for example, the review artiglé It is known that

a system of charges{(1,Q,Q) is always stable &< 1. For
Now in time tff)(ZR) charge 2 would leave the second Q=1 there is a region of mass ratios where the system is
sphere and since it passed the distaRtevithout losing  stable, and finally at approximatey>1.24 the stability is
speed its minimal kinetic energy on the way out from thelost for all masse§5]. Up to now there has been no apparent
second sphere has to be theoretical attempt to estimate this numbe}.
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If we take two interacting particles, it is known that a bound states. To see this we may expand the wave function
bound state can appear only if the particles can be confineidto a combination of narrow wave packets, and the timeevo-
on some energy surface. In the case of three Coulomhution of this function is largely determined by the Ehrenfest
charges it is impossible to put them on a compact energtheorem, with all wave packets moving along classical tra-
surface due to the singularity of the Coulomb interaction.jectories. Thus the probability density cannot be stationary
Thus the stability can be assessed only through the decand the quantum system also decays. Our classical result
time of the system. We do not provide a formal proof but itindicates the quantum instability for all masse€at4 and
is intuitively obvious that, if the classical system is decayingit agrees with the results of QM computations predicting
in a finite time, the quantum analog system cannot possesastability atQ>1.24 regardless of the mass ratio.
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